The design, synthesis and biological evaluation of stable ozonides with antimalarial activity

Luiz-Claudio de Almeida Barbosa, ${ }^{a}$ David Cutler, ${ }^{b}$ John Mann, ${ }^{*, b}$ M. James Crabbe, ${ }^{\boldsymbol{c}}$ Geoffrey C. Kirby ${ }^{\boldsymbol{d}}$ and David C. Warhurst ${ }^{\boldsymbol{d}}$
${ }^{a}$ Departamento de Quimica, Universidade Federal de Vicosa, 36570, Vicosa - MG, Brazil
${ }^{b}$ Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
${ }^{\text {c }}$ Department of Microbiology, University of Reading, Whiteknights, Reading RG6 2AJ, UK
${ }^{d}$ Department of Medical Protozoology, London School of Hygiene and Tropical Medicine, Keppel Street, London WCl 7HT, UK

The synthesis of variously substituted $8,9,10,11$-tetraoxatricyclo[5.2.1.1 ${ }^{2.6}$] undecan-4-ones by ozonolysis of various 8-oxabicyclo[3.2.1] oct-6-en-3-ones is described. Several of these stable ozonides exhibited activity ($\mathrm{IC}_{50} \mathrm{~s}$ of 2-20 microgram cm ${ }^{-3}$) against a chloroquine-resistant strain of the malaria parasite Plasmodium falciparum.

Despite the current preoccupation with AIDS, malaria remains a much greater problem. The WHO estimates that there are around 280 million cases of malaria each year and about two million deaths can be attributed to the disease. About half of these fatalities are children under the age of five years. ${ }^{1}$ Although there are numerous drugs on the market for both treatment and prevention, parasites with multiple drug resistance are now prevalent in all parts of the world where malaria is endemic. ${ }^{2}$ There is thus an urgent need for new antimalarial drugs, especially those with novel modes of action. The sesquiterpene artemisinin 1 from Chinese Artemisia annua is such a drug.

Although crude extracts of the plant have been used for at least 2000 years for the treatment of all types of fever including that due to malaria, the major active constituent, artemisinin or qinghaosu was not isolated and characterised until 1971. ${ }^{3}$ Clinical trials in 1979 established high potency (at the nanogram level) for the pure drug, and there has been enormous synthetic and pharmacological interest ever since. ${ }^{4}$ At the present time analogues such as 2 and 3 are proving to be particularly interesting. ${ }^{5}$

Our interest was aroused following the serendipitous isolation of the ozonide 4a. We were attempting an ozonolytic cleavage of the cycloaddition product of oxyallyl cation 5 and furan, 2,4-dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one 6a, when this unexpected product was obtained. The ozonide had a melting point in excess of $100^{\circ} \mathrm{C}$ and was stable enough to be the object of an X-ray crystallographic study. ${ }^{6}$ It was submitted for speculative evaluation as an antimalarial agent and proved to have an IC_{50} of around $20 \mu \mathrm{~g} \mathrm{~cm}{ }^{-3}$ against a chloroquineresistant strain of Plasmodium falciparum from Thailand. In order to rationalise the synthesis of other potential antimalarial agents, we used molecular modelling and energy minimisation including considerations of charge, van der Waals forces, bond, angle and torsion energies, together with a unique spacehunting algorithm to avoid local minima. ${ }^{7}$ Energy minima were of the order of $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the RMS fits, based on key oxygen atoms, were close to $0.2 \AA$ for the comparison (Fig. 1) between 1 and $\mathbf{4 a}$ (and also for most of the other ozonides which are described in this paper). This encouraged us to prepare a range of similar structures and this work forms the basis of this paper. ${ }^{8}$

The substrates 6 for the ozonolyses were prepared using our standard methods for the generation of the oxyallyl cation 5^{9} and its entrapment with various 2-substituted furans. The simplest cycloadduct 6a was reduced to the axial alcohol 7

1

4
a $\mathrm{R}=\mathrm{H}$
b $\mathrm{R}=\mathrm{Et}$
c $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OAc}$
d $\mathrm{R}=$ heptyl
e $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$

7

10

2

5

6
f $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ g $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{Ph}$
h $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$
i $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$
j $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

11
$\left(\mathrm{NaBH}_{4}, \mathrm{EtOH}\right)$ and converted into the methyl ether 8, the dithiocarbonate 9 and thence into the alkene $10\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$. Ozonolyses were then carried out in dichloromethane at -5 to

Fig. 1 Energy minimised structures of 1 and $\mathbf{4 a}$
Table 1 Anti-malarial activities of ozonides ${ }^{a}$

	Compound
$\mathrm{IC}_{50} / \mu \mathrm{g} \mathrm{cm}^{-3}$	
$\mathbf{4 a}$	18
$\mathbf{4 b}$	12
$\mathbf{4 c}$	>500
$\mathbf{4 d}$	26
$\mathbf{4 e}$	3
$\mathbf{4 g}$	11
$\mathbf{4 h}$	6
$\mathbf{4 i}$	2
$\mathbf{4 j}$	7

${ }^{a}$ For comparison: artemisinin 1 has an IC_{50} of $10^{-3} \mu \mathrm{~g} \mathrm{~cm}^{-3}$ and quinine has an IC_{50} of $0.18 \mu \mathrm{~g} \mathrm{~cm}{ }^{-3}$. Each result is the mean of two determinations with errors $\leqslant 10 \%$.
$0^{\circ} \mathrm{C}$, and the ozonides $\mathbf{4 a}-\mathbf{j}$ from substrates $\mathbf{6 a - j}$ usually crystallised directly from the reaction mixture or could be obtained following evaporation of the solvent. Only polymeric material was obtained when compounds 8 and 10 were ozonised. This interesting difference in reactivity between the bicyclic ketone 6a and these reduced counterparts is possibly due to the overlap between the lone pair orbital of the bridgehead oxygen and the carbonyl π-system of 6 . This interaction, which is absent in the other compounds, would be expected to reduce the nucleophilicity of the bridgehead oxygen, thus stabilizing the adjacent ozonide against destruction by this centre.

All of the ozonides were submitted for biological evaluation ${ }^{10}$ in vitro against a multi-resistant strain of Plasmodium falciparum from Thailand, and the results of these investigations are shown in Table 1. While it is impossible to establish whether some of the compounds were metabolised or deactivated prior to interacting with the parasites, it is clear from these results that the antimalarial activity first observed with compound 4a was not an isolated 'fluke'. Further computer modelling has suggested that ozonides from 1,7-disubstituted oxabicycles such as 11 would have even closer structural similarity to artemisinin, and these compounds are the target of our present investigations.

Experimental

IR spectra were recorded using a Perkin-Elmer 881 series double-beam spectrophotometer, and samples were run as thin films or in solution using NaCl plates. Low resolution and accurate mass data were recorded on a VG Analytical ZAB-IF mass spectrometer by the SERC mass spectrometry service at the University of Swansea. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker WH250 spectrometer or on a JEOL FX400 instrument; J values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on the JEOL instrument. Flash chromatography was carried out using Sorbsil ${ }^{\mathrm{TM}}$ C60 silica gel ($40-60 \mu \mathrm{~m}$). Solvents were distilled from calcium hydride when required anhydrous. Light petroleum (petrol) refers to the fraction with distillation range $40-60^{\circ} \mathrm{C}$, and ether refers to diethyl ether.

3-(2-Furyl)propan-1-ol

To a stirred suspension of $\mathrm{LiAlH}_{4}(1.14 \mathrm{~g}, 30 \mathrm{mmol})$ in dry ether $\left(80 \mathrm{~cm}^{3}\right)$, kept under a nitrogen atmosphere, a solution of 3-(2furyl) propenal ($2.85 \mathrm{~g}, 23.36 \mathrm{mmol}$) in THF ($15 \mathrm{~cm}^{3}$), was added over a period of 15 min . After 5 h stirring at room temperature the reaction was worked up by careful addition of ethyl acetate $\left(30 \mathrm{~cm}^{3}\right)$ followed by water $\left(1 \mathrm{~cm}^{3}\right)$. The resultant mixture was stirred for 40 min and the solid formed removed by filtration. The filtrate was dried over MgSO_{4} and concentrated under reduced pressure to afford the crude product as a colourless oil. This oil was purified by flash chromatography over silica gel ($1: 2$ petrol-ether) to give the required product $(1.56 \mathrm{~g}, 53 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.23$ ($1: 1$, petrol-ether); $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 3344,3100,1598$ and $1509 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 1.88 (br quintet, $\left.2 \mathrm{H}, J 6.5, \mathrm{CH}_{2}\right), 2.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $2.71\left(\mathrm{t}, 2 \mathrm{H}, J 7.5, \mathrm{CH}_{2}\right), 3.65\left(\mathrm{t}, 2 \mathrm{H}, J 6.4, \mathrm{CH}_{2} \mathrm{OH}\right), 5.99$ (dd, 1 $\mathrm{H}, J 3.3$ and $\left.0.8, \mathrm{H}-3^{\prime}\right), 6.27\left(\mathrm{dd}, 1 \mathrm{H}, J 3.3\right.$ and $\left.1.9, \mathrm{H}-4^{\prime}\right)$ and 7.29 (dd, $1 \mathrm{H}, J 1.9$ and $\left.0.8, \mathrm{H}-5^{\prime}\right) ; m / z 126.0679\left(\mathrm{M}^{+}, \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}\right.$ requires 126.0681).

3-(2-Furyl)propyl acetate

A solution of 3-(2-furyl)propan-1-ol $(2.61 \mathrm{~g}, 20.69 \mathrm{mmol})$ in dry pyridine $\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}\left(2 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 24 h . After that time dichloromethane (180 cm^{3}) was added to the reaction mixture. The resultant solution was washed with brine $\left(5 \times 50 \mathrm{~cm}^{3}\right), \mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 3 \times 30\right.$ $\left.\mathrm{cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure to afford a yellow oil. This oil was purified by flash chromatography over silica gel $(3: 2$, petrol-ether) to give the required product as a colourless oil ($3.08 \mathrm{~g}, 81 \%$); $R_{\mathrm{f}} 0.48(3: 2$, petrol-ether $)$; $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{1} 1736$ and $1598 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 1.91 (br quintet, $2 \mathrm{H}, J 6.5, \mathrm{CH}_{2}$), $1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.65\left(\mathrm{t}, 2 \mathrm{H}, J 7.5, \mathrm{CH}_{2}\right), 4.04\left(\mathrm{t}, 2 \mathrm{H}, J 6.4, \mathrm{CH}_{2}\right), 5.95(\mathrm{dd}, 1 \mathrm{H}$, $J 1.85$ and $0.85, \mathrm{H}^{\prime} \mathbf{3}^{\prime}$), 6.21 (dd, $1 \mathrm{H}, J 1.85$ and $2.93, \mathrm{H}-4^{\prime}$) and $7.24\left(\mathrm{dd}, 1 \mathrm{H}, J 1.85\right.$ and $\left.0.85, \mathrm{H}-5^{\prime}\right) ; m / z 168.0784\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $168.0786,3 \%$).

1-Ethyl-2-endo,4-endo-dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3one 6 b
A $250 \mathrm{~cm}^{3}$, two-necked round bottom flask was fitted with a $50 \mathrm{~cm}^{3}$ dropping funnel and charged with dry acetonitrile (40 cm^{3}). Dry NaI ($11.25 \mathrm{~g}, 75 \mathrm{mmol}$) was added with vigorous stirring under a slow stream of nitrogen. Powdered copper (2.5 $\mathrm{g}, 37.5 \mathrm{mmol}$) was added, followed by 2-ethylfuran ($6.5 \mathrm{~g}, 67.7$ $\mathrm{mmol})$. A solution of 2,4-dibromopentan-3-one (4.5 g, 17.3 mmol) in dry acetonitrile ($5 \mathrm{~cm}^{3}$) was added over 50 min at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and stirred for 18 h . After that time the flask was cooled to $0^{\circ} \mathrm{C}$ and dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was added. The resultant mixture was then poured into a $1 \mathrm{dm}^{3}$ conical flask containing water ($100 \mathrm{~cm}^{3}$) and crushed ice ($100 \mathrm{~cm}^{3}$), and it was thoroughly stirred to allow the precipitation of copper salts. After filtration through a Celite pad, the mother liquor was washed with aqueous $\mathrm{NH}_{3}\left(35 \% \mathrm{v} / \mathrm{v}, 3 \times 50 \mathrm{~cm}^{3}\right)$, brine ($60 \mathrm{~cm}^{3}$), dried over MgSO_{4} and concentrated to afford a pale yellow oil. Further purification by flash chromatography (3:1, petrol-ether) gave the required product $6 \mathbf{b}(2.27 \mathrm{~g}, 73 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.36$ ($3: 1$, petrol-ether); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$ 1712 and $1595 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.95-2.05(3 \mathrm{~d}, 9 \mathrm{H}, J 7$, $3 \times \mathrm{CH}_{3}$), 2.84 (multiplet with seven lines, $J 7.5, \mathrm{CH}_{2}$), $2.62(\mathrm{q}$, $1 \mathrm{H}, J 7, \mathrm{H}-2), 2.78(\mathrm{dq}, 1 \mathrm{H}, J 7$ and $5, \mathrm{H}-4), 4.88(\mathrm{dd}, 1 \mathrm{H}, J 5$ and $1, \mathrm{H}-5), 6.10(\mathrm{~d}, 1 \mathrm{H}, J 6, \mathrm{H}-7)$ and $6.27(\mathrm{dd}, 1 \mathrm{H}, J 6$ and 1 , $\mathrm{H}-6) ; m / z 181.1228\left([\mathrm{M}+1]^{+}, \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\right.$ requires 181.1229).

1-Acetoxymethyl-2-endo,4-endo-dimethyl-8-oxabicyclo[3.2.1]-oct-6-en-3-one 6c

Using the methodology described for $\mathbf{6 b}$, compound $\mathbf{6 c}$ was prepared as a pale yellow solid $(49 \%), \mathrm{mp} 53.5-54.0^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.23$ (3:1, petrol-ether); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725,1712$ and 1595 ;
$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.01\left(2 \mathrm{~d}, 6 \mathrm{H}, J 8.02,2 \times \mathrm{CH}_{3}\right), 2.15(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH} 3$), $2.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and H-4), $4.37(\mathrm{~d}, 1 \mathrm{H}, J 12.32$, 1 of $\left.\mathrm{CH}_{2} \mathrm{OAc}\right), 4.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 12.32,1\right.$ of $\left.\mathrm{CH}_{2} \mathrm{OAc}\right), 4.93(\mathrm{dd}, 1 \mathrm{H}, J$ 4.71 and $1.67, \mathrm{H}-5), 6.12(\mathrm{~d}, 1 \mathrm{H}, J 6.06, \mathrm{H}-7)$ and $6.37(\mathrm{dd}, 1 \mathrm{H}$, $J 6.06$ and 1.70, H-6); (Found: C, 64.0; H, 7.2. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.27 ; \mathrm{H}, 7.17 \%$).

1-Heptyl-2-endo,4-endo-dimethyl-8-oxabicyclo [3.2.1] oct-6-en-

 3-one 6dUsing the methodology described for $\mathbf{6 b}$, compound $\mathbf{6 d}$ was prepared as a colourless oil (71%); $R_{\mathrm{f}} 0.27$ ($9: 1$, petrol-ether); $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 1711$ and $1594 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.80-$ $2.00\left(2 \mathrm{~d}+\mathrm{t}, 9 \mathrm{H}, J 7,3 \times \mathrm{CH}_{3}\right), 1.20-1.50(\mathrm{~m}, 10 \mathrm{H}$, $5 \times \mathrm{CH}_{2}$), 1.75-1.85 (m, $2 \mathrm{H}, \mathrm{O}-\mathrm{C}-\mathrm{CH}_{2}$), $2.62(\mathrm{q}, 1 \mathrm{H}, J 6.8$, $\mathrm{H}-2), 2.77(\mathrm{dq}, 1 \mathrm{H}, J 6.8$ and $4.5, \mathrm{H}-4), 4.85(\mathrm{dd}, 1 \mathrm{H}, J 4.5$ and $1.5, \mathrm{H}-5), 6.10(\mathrm{~d}, 1 \mathrm{H}, J 6.5, \mathrm{H}-7)$ and $6.23(\mathrm{dd}, 1 \mathrm{H}, J 6.5$ and 1.5, H-6); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 251.2011\left([\mathrm{M}+1]^{+}, \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}\right.$ requires $251.2011,2 \%$).

1-(3-Acetoxypropyl)-2-endo,4-endo-dimethyl-8-oxabicyclo-

 [3.2.1] oct-6-en-3-one 6 eUsing the methodology described for $\mathbf{6 b}$, compound $\mathbf{6 e}$ was prepared (52%); $R_{\mathrm{f}} 0.48$ ($3: 2$, petrol-ether); $v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1}$ 1739, 1712 and $1595 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96$ and 0.99 ($2 \mathrm{~d}, 6$ $\left.\mathrm{H}, J 7.0,2 \times \mathrm{CH}_{3}\right), 1.65-1.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.59(\mathrm{q}, 1 \mathrm{H}, J 7.3, \mathrm{H}-2), 2.76(\mathrm{dq}, 1 \mathrm{H}, J 7.96$ and 4.77 , H4), 4.12 (brt, $2 \mathrm{H}, J 8.0, \mathrm{CH}_{2} \mathrm{O}$), $4.84(\mathrm{dd}, 1 \mathrm{H}, J 4.77$ and 1.83 , $\mathrm{H}-5), 6.08(\mathrm{~d}, 1 \mathrm{H}, J 5.86, \mathrm{H}-7)$ and $6.26(\mathrm{dd}, 1 \mathrm{H}, J 5.86$ and $1.83, \mathrm{H}-6) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.55\left(\mathrm{CH}_{3}\right), 10.21\left(\mathrm{CH}_{3}\right), 20.82$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 22.85\left(\mathrm{CH}_{2}\right), 30.30\left(\mathrm{CH}_{2}\right), 49.53(\mathrm{C}-2), 53.98(\mathrm{C}-4)$, $64.31\left(\mathrm{CH}_{2} \mathrm{O}\right), 82.40(\mathrm{C}-5), 89.82(\mathrm{C}-1), 133.55(\mathrm{C}-6), 135.30$ (C-7), 170.95 (COO) and 208.99 (CO); $m / z 252.1362\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $252.1362,15 \%$).

1-(3-Hydroxypropyl)-2-endo,4-endo-dimethyl-8-oxabicyclo[3.2.1]]ct-6-en-3-one $6 f$

To a stirred solution of the acetate $6 e(600 \mathrm{mg}, 2.38 \mathrm{mmol})$ in methanol $\left(5 \mathrm{~cm}^{3}\right)$, was added aq. $\mathrm{K}_{2} \mathrm{CO}_{3}\left(10 \% ; 5 \mathrm{~cm}^{3}\right)$. After 8 h stirring at room temperature, water $\left(30 \mathrm{~cm}^{3}\right)$ was added and the methanol was removed under reduced pressure. The aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$) and the combined organic extract was washed with brine ($30 \mathrm{~cm}^{3}$), dried over MgSO_{4} and concentrated under reduced pressure to leave a colourless oil. This oil was purified by flash chromatography over silica gel ($1: 3$, petrol-ether) to afford the required product as a pale yellow oil ($0.46 \mathrm{~g}, 92 \%$); $R_{\mathrm{f}} 0.15$ ($1: 3$, petrol-ether); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3411,1710$ and $1596 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.96 and $0.99\left(2 \mathrm{~d}, 6 \mathrm{H}, J 6.96,2 \times \mathrm{CH}_{3}\right), 1.60-$ $2.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.63(\mathrm{q}, 1 \mathrm{H}, J 6.96$, $\mathrm{H}-2), 2.76$ (dq, $1 \mathrm{H}, J 6.96$ and $4.76, \mathrm{H}-4$), 3.68 (br t, $2 \mathrm{H}, J 6.00$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.86(\mathrm{dd}, 1 \mathrm{H}, J 4.76$ and $1.83, \mathrm{H}-5), 6.09(\mathrm{~d}, 1 \mathrm{H}, J 5.86$, $\mathrm{H}-7$) and 6.25 (dd, $1 \mathrm{H}, J 5.86$ and 1.83 , H-6); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) $9.63,10.23,26.65,30.59,49.57,53.90,62.61,82.45$, $90.20,133.25,135.65$ and $209.22 ; m / z 210.1258\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}\right.$ requires $210.1252,26 \%$).

1-(3-Benzoyloxypropyl)-2-endo,4-endo-dimethyl-8-oxabicyclo[3.2.1] oct-6-en-3-one 6 g

To an ice-cooled solution of the alcohol $\mathbf{6 f}(420 \mathrm{mg}, 2 \mathrm{mmol})$ in dry dichloromethane ($12 \mathrm{~cm}^{3}$) was added pyridine $\left(0.4 \mathrm{~cm}^{3}\right)$ and benzoyl chloride ($0.60 \mathrm{~cm}^{3}, 5 \mathrm{mmol}$). The resultant mixture was allowed to warm up to room temperature and stirred overnight (14 h). After that time dichloromethane ($150 \mathrm{~cm}^{3}$) and water (50 cm^{3}) were added and the two layers separated. The organic phase was washed with $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 30 \mathrm{~cm}^{3}\right)$, saturated aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and brine $\left(30 \mathrm{~cm}^{3}\right)$, and then dried over MgSO_{4}. After filtration the solution was concentrated under reduced pressure to leave a yellow oil. This oil was purified by column chromatography ($2: 1$, petrol-ether) to afford the required product as a colourless viscous oil ($570 \mathrm{mg}, 91 \%$); R_{f}
0.27 ($1: 2$, petrol-ether); $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 1713$ (CO and COO), 1603 and $1586 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96$ and 1.00 (2 d , $\left.6 \mathrm{H}, J 6.96,2 \times \mathrm{CH}_{3}\right), 1.80-2.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.61(\mathrm{q}, 1$ $\mathrm{H}, J 6.96, \mathrm{H}-2), 2.76(\mathrm{dq}, 1 \mathrm{H}, J 6.96$ and $4.76, \mathrm{H}-4), 4.37$ (br t, 2 $\mathrm{H}, J 6.60, \mathrm{CH}_{2} \mathrm{O}$), $4.85(\mathrm{dd}, 1 \mathrm{H}, J 4.76$ and $1.83, \mathrm{H}-5), 6.10(\mathrm{~d}, 1$ $\mathrm{H}, J 6.23, \mathrm{H}-7$), 6.26 (dd, $1 \mathrm{H}, J 6.23$ and $1.83, \mathrm{H}-6$), $7.44(\mathrm{t}, 2 \mathrm{H}$, $\left.J 8.06,2 \times H_{m}\right), 7.55\left(\mathrm{dt}, 1 \mathrm{H}, J 8.06\right.$ and $\left.1.46, H_{p}\right)$ and $8.04(\mathrm{dd}$, $2 \mathrm{H}, J 8.06$ and 1.46, $\left.2 \times H_{o}\right) ; m / z 314.1517\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}\right.$ requires $314.1518,30 \%$).

1-(3-Benzyloxypropyl)-2-endo,4-endo-dimethyl-8-oxabicyclo[3.2.1] oct-6-en-3-one 6 h

To a solution of the alcohol $\mathbf{6 f}$ ($315 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry DMF ($5 \mathrm{~cm}^{3}$), kept at room temperature and under a nitrogen atmosphere, was added $\mathrm{NaH}(66.7 \mathrm{mg}, \sim 1.66$ $\mathrm{mmol} ; 60 \%$ in mineral oil). The resultant suspension was then stirred at room temperature for 15 min before addition of benzyl bromide ($308 \mathrm{mg}, 1.8 \mathrm{mmol}$). The reaction mixture was then stirred at $45-50^{\circ} \mathrm{C}$ for 18 h before addition of ether ($150 \mathrm{~cm}^{3}$) and water $\left(40 \mathrm{~cm}^{3}\right)$. The two layers were separated and the aqueous phase was extracted with ether (3×30 cm^{3}). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure to leave a yellow oil. This oil was subjected to flash chromatography ($2: 1$, petrol-ether) to afford the required ether as a pale yellow oil ($87 \mathrm{mg}, 19 \%$); $R_{\mathrm{f}} 0.32$ ($2: 1$, petrol-ether); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$ 1711, 1600 and $1497 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95$ and 0.98 (2 d , $\left.6 \mathrm{H}, J 6.96,2 \times \mathrm{CH}_{3}\right), 1.78-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.58$ (q, $1 \mathrm{H}, J 6.96, \mathrm{H}-2), 2.75(\mathrm{dq}, 1 \mathrm{H}, J 6.96$ and $4.76, \mathrm{H}-4)$, 3.45-3.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.82(\mathrm{dd}, 1 \mathrm{H}$, $J 4.76$ and $1.83, \mathrm{H}-5), 6.06(\mathrm{~d}, 1 \mathrm{H}, J 5.86, \mathrm{H}-7), 6.22$ (dd, 1 H , $J 5.86$ and $1.83, \mathrm{H}-6$) and $7.31-7.34(\mathrm{~m}, 5 \mathrm{H}$, phenyl); m / z $300.1722\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}\right.$ requires $300.1725,2 \%$). Starting material (35%) was also recovered.

1-(3-Methoxypropyl)-2-endo,4-endo-dimethyl-8-oxabicyclo-

[3.2.1] oct-6-en-3-one $6 \mathbf{i}$
The same procedure described for 6 h was used to prepare compound 6 i as a pale yellow oil $(70 \%$; 93% if recovered starting material is taken into account); $R_{\mathrm{f}} 0.20$ ($2: 1$, petrol-ether); $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 1712$ and $1596 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96$ and $0.99\left(2 \mathrm{~d}, 6 \mathrm{H}, J 6.96,2 \times \mathrm{CH}_{3}\right), 1.55-1.99(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.59(\mathrm{q}, 1 \mathrm{H}, J 6.96, \mathrm{H}-2), 2.75(\mathrm{dq}, 1 \mathrm{H}, J 6.96$ and 4.77, H-4), 3.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.40-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.83$ (dd, $1 \mathrm{H}, J 4.77$ and 1.84, H-5), 6.08 (d, $1 \mathrm{H}, J 5.86, \mathrm{H}-7$) and 6.23 (dd, $1 \mathrm{H}, J 5.86$ and $1.84, \mathrm{H}-6$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.57$, $10.23,23.62,30.55,49.57,55.56,58.38,72.52,82.40,90.08$, 133.24, 135.63 and 209.28; m/z $224.1406\left(\mathrm{M}^{+}, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}\right.$ requires $224.1412,40 \%$).

1-(3-Chloropropyl)-2-endo,4-endo-dimethyl-8-oxabicyclo[3.2.1] oct-6-en-3-one 6 j

To a stirred solution of the alcohol $6 f(315 \mathrm{mg}, 1.5 \mathrm{mmol})$ in dry acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CCl}_{4}\left(3 \mathrm{~cm}^{3}\right)$, kept at room temperature and under a nitrogen atmosphere, was added triphenylphosphine ($524.6 \mathrm{mg}, 2 \mathrm{mmol}$ in $4 \mathrm{~cm}^{3}$ of CCl_{4}). The reaction mixture was stirred for 15 h , before removal of the solvent under reduced pressure to leave the crude product as a yellow oil. This oil was subjected to flash chromatography ($2: 1$, petrol-ether) to afford the required chloro-compound as a pale yellow oil ($310 \mathrm{mg}, 91 \%$); $R_{\mathrm{f}} 0.26$ ($2: 1$, petrol-ether); $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 1712$ and $1596 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96$ and $1.00\left(2 \mathrm{~d}, 6 \mathrm{H}, J 6.96,2 \times \mathrm{CH}_{3}\right), 1.79-2.04(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.58(\mathrm{q}, 1 \mathrm{H}, J 6.96, \mathrm{H}-2), 2.76(\mathrm{dq}, 1 \mathrm{H}, J 6.96$ and $4.77, \mathrm{H}-4$), 3.60 (br t, $1 \mathrm{H}, J 6.00, \mathrm{CH}_{2} \mathrm{Cl}$), 4.84 (dd, $1 \mathrm{H}, J 4.77$ and 1.83, H-5), 6.09 (d, $1 \mathrm{H}, J 5.86, \mathrm{H}-7$) and 6.26 (dd, $1 \mathrm{H}, J$ 5.86 and $1.83, \mathrm{H}-6) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.54,10.19,26.80$, $31.17,45.16,49.51,54.05,82.40,89.78,133.58,135.27$ and 208.86; m/z 228.0911/230.0882 ($\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClO}_{2}$ requires $228.0917 / 230.0887,36 \%)$.

Typical procedure for ozonisation

Ozone was passed through a solution of the alkene (2 mmol) in dichloromethane-petrol ($3: 50 \mathrm{~cm}^{3}$) held at $-70^{\circ} \mathrm{C}$. After $10-$ 15 min the reaction was judged to be completed when ozone was issuing from the exit tube connected to the flask. The solvent was removed to afford the required product in quantitative yield as a yellow oil or white solid. The oily ozonides were not subjected to further purification, and the solids were recrystallised from dichloromethane-ether.

2-Ethyl-3-exo,5-exo-dimethyl-8,9,10,11-tetraoxatricyclo-

 [5.2.1.1 ${ }^{\text {2.6 }}$] undecan-4-one 4b. A white solid; $\mathrm{mp} 90-100^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}, \mathrm{CH} \mathrm{H}_{3}\right), 1.17\left(2 \mathrm{~d}, 6 \mathrm{H}, \mathrm{J} 7,2 \times \mathrm{CH}_{3}\right) 1.50$ and $1.72(2$ multiplets with six lines each, $2 \mathrm{H}, J 7.2, \mathrm{CH}_{2}$), $2.70(\mathrm{dq}, 1 \mathrm{H}, J 7$ and $1.5, \mathrm{H}-3$), 2.90 (br quintet, $1 \mathrm{H}, J 6.8, \mathrm{H}-5), 4.08(\mathrm{~d}, 1 \mathrm{H}, J$ $6.0,1.0$ and $1.0, \mathrm{H}-6), 5.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$ and $5.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$; $\delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.77\left(\mathrm{CH}_{3}\right), 8.49$ and 9.46 (3-Me and $5-\mathrm{Me}$), $25.22\left(\mathrm{CH}_{2}\right), 44.88$ and $46.69(\mathrm{C}-3$ and $\mathrm{C}-5), 76.06(\mathrm{C}-6), 80.94$ (C-2), 99.14 and 102.14 (C-1 and C-7) and 207.40 (C-4) (Found: C, $57.9 ; \mathrm{H}, 7.1 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $\mathrm{C}, 57.89 ; \mathrm{H}, 7.07 \%$).2-Acetoxymethyl-3-exo,5-exo-dimethyl-8,9,10,11-tetraoxatricyclo[5.2.1.1 ${ }^{2.6}$]undecan-4-one 4c. $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1}$ $1721(\mathrm{COO}$ and CO$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15(\mathrm{~d}, 3 \mathrm{H}$, $\left.J 7.0, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0, \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.65(\mathrm{q}, 1 \mathrm{H}, J 7.0, \mathrm{H}-3), 2.87$ (br quintet, $1 \mathrm{H}, J 7.0, \mathrm{H}-5$), 4.04-4.18 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ and $\left.\mathrm{H}-6\right)$, $5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$ and 5.73 (s, $1 \mathrm{H}, \mathrm{H}-7$); m/z $290.1240\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{7}\right.$ requires $290.1239,16 \%$).

2-Heptyl-3-exo,5-exo-dimethyl-8,9,10,11-tetraoxatricyclo-

[5.2.1.1 ${ }^{2,6}$] undecan-4-one 4 d . A white solid, $\mathrm{mp} 75-76{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1716 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(\mathrm{br} \mathrm{t}, 3 \mathrm{H}$, $\left.J 7, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J} 7,3-\mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{CH}_{3}\right)$, $1.20-1.80\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right.$, side chain), $2.70(\mathrm{brq}, 1 \mathrm{H}, J 7$, $\mathrm{H}-3$), 2.88 (br quintet, $1 \mathrm{H}, J 7, \mathrm{H}-5$), 4.07 (br d, $1 \mathrm{H}, J 6.5, \mathrm{H}-6$), $5.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$ and $5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.82 (C-7'), 9.68 and 14.06 ($3-\mathrm{Me}$ and $5-\mathrm{Me}$), 21.67, 22.62, $29.19,29.73,31.76$ and 32.73 (carbons 1^{\prime} to 6^{\prime} from side chain), 45.10 and 47.30 (C-3 and C-5), 76.55 (C-6), 81.21 (C-2), 99.33 and 102.34 ($\mathrm{C}-1$ and $\mathrm{C}-7$) and 207.45 (C-4) (Found: C, 64.4; H, 8.9. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\mathrm{C}, 64.41 ; \mathrm{H}, 8.78 \%$).

2-(3-Acetoxypropyl)-3-exo,5-exo-dimethyl-8,9,10,11-tetraoxatricyclo[5.2.1.1 ${ }^{2.6}$] undecan-4-one $4 \mathrm{e} . v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$ $1721(\mathrm{COO}$ and CO$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15(\mathrm{~d}, 3 \mathrm{H}$, $J 6.96, \mathrm{CH}_{3}$), $1.16\left(\mathrm{~d}, 3 \mathrm{H}, J 7.33, \mathrm{CH}_{3}\right), 1.80-1.98(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{q}, 1 \mathrm{H}, \mathrm{J} 6.96, \mathrm{H}-3), 2.87$ (quintet, $1 \mathrm{H}, \mathrm{J} 7.33, \mathrm{H}-5$), $4.04-4.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $\mathrm{H}-6$), $4.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$ and $5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.83\left(\mathrm{CH}_{3}\right), 9.67\left(\mathrm{CH}_{3}\right), 20.98\left(\mathrm{CH}_{3}\right), 21.32\left(\mathrm{CH}_{2}\right), 29.36\left(\mathrm{CH}_{2}\right)$, 45.09 (C-5), $47.66(\mathrm{C}-3), 64.30\left(\mathrm{CH}_{2} \mathrm{O}\right), 76.22(\mathrm{C}-6), 80.74$ (C-2), $99.29(\mathrm{C}-7), 102.05(\mathrm{C}-1), 171.34(\mathrm{COO})$ and 207.20 (CO); $m / z 300.1209\left(\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{7}\right.$ requires $300.1209,5 \%$).
2-(3-Benzoyloxypropyl)-3-exo,5-exo-dimethyl-8,9,10,11tetraoxatricyclo[5.2.1.1 ${ }^{2.6}$] undecan-4-one 4g. $v_{\text {max }}($ thin film $) /$ $\mathrm{cm}^{-1} 1715$ (COO and CO), 1603, 1586 and 1493; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.14$ and $1.16\left(2 \mathrm{~d}, 6 \mathrm{H}, J 6.96,2 \times \mathrm{CH}_{3}\right), 1.80-$ $2.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.69(\mathrm{q}, 1 \mathrm{H}, J 6.96, \mathrm{H}-3), 2.87(\mathrm{br}$ quintet, $1 \mathrm{H}, J 6.00, \mathrm{H}-5), 4.08(\mathrm{~d}, 1 \mathrm{H}, J 5.90, \mathrm{H}-6), 5.48(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-1), 5.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7\right.$), $7.44\left(\mathrm{t}, 2 \mathrm{H}, J 8.06,2 \times \mathrm{H}_{m}\right.$), 7.57 (br t, $\left.1 \mathrm{H}, J 8.06, \mathrm{H}_{p}\right)$ and $8.02\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, J 8.06,2 \times \mathrm{H}_{o}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.42\left(\mathrm{CH}_{3}\right), 9.39\left(\mathrm{CH}_{3}\right), 21.26\left(\mathrm{CH}_{2}\right), 29.05$ $\left(\mathrm{CH}_{2}\right), 44.87(\mathrm{C}-5), 47.43(\mathrm{C}-3), 64.66\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.99(\mathrm{C}-6)$, $80.58(\mathrm{C}-2), 99.06(\mathrm{C}-7), 101.76(\mathrm{C}-1), 122.23\left(2 \times \mathrm{C}_{m}\right), 129.30$ $\left(2 \times \mathrm{C}_{o}\right), 129.80\left(\mathrm{C}-1\right.$ ' aromatic), $132.91\left(\mathrm{C}_{p}\right), 166.52(\mathrm{COO})$ and $207.45(\mathrm{CO}) ; m / z 362.1374\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7}\right.$ requires $362.1366,3 \%$).

2-(3-Benzyloxypropyl)-3-exo,5-exo-dimethyl-8,9,10,11-

 tetraoxatricyclo[5.2.1.1 ${ }^{2,6}$] undecan-4-one $4 \mathrm{~h} . v_{\max }($ thin film $)$ / $\mathrm{cm}^{-1} 1716,1604$ and $1498 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.13$ and $1.14\left(2 \mathrm{~d}, 6 \mathrm{H}, J 7.33,2 \times \mathrm{CH}_{3}\right), 1.58-1.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 2.65 (q, $1 \mathrm{H}, J 7.33, \mathrm{H}-3$), 2.46 (br quintet, $1 \mathrm{H}, J 7.00, \mathrm{H}-5$),3.43-3.58 (m, 2 H, OCH ${ }_{2}$), $4.05(\mathrm{~d}, 1 \mathrm{H}, J 5.86, \mathrm{H}-6), 4.51(\mathrm{~s}, 2$ $\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), 5.42 (s, $1 \mathrm{H}, \mathrm{H}-1$), 5.68 (s, $1 \mathrm{H}, \mathrm{H}-7$) and $7.25-7.36$ (m, 5 H , phenyl); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $8.69,9.66,22.18,29.70$, $45.06,47.66,70.01,72.97,76.21,80.96,99.27,102.18,127.67$, 128.42, 138.22 and $207.59 ; m / z 348.1582\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}\right.$ requires $348.1573,3 \%$).
2-(3-Methoxypropyl)-3-exo,5-exo-dimethyl-8,9,10,11-
tetraoxatricyclo[5.2.1.1 ${ }^{2,6}$] undecan-4-one 4i. $v_{\text {max }}($ thin film $)$ / $\mathrm{cm}^{-1} 1714 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.14$ and $1.16(2 \mathrm{~d}, 6 \mathrm{H}, J 6.96$, $\left.2 \times \mathrm{CH}_{3}\right), 1.57-1.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.66(\mathrm{q}, 1 \mathrm{H}, \mathrm{J} 6.96$, $\mathrm{H}-3$), 2.88 (br quintet, $1 \mathrm{H}, J 6.50, \mathrm{H}-5$), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.39-3.55 (m, 2 H, CH ${ }_{2} \mathrm{O}$), $4.08(\mathrm{~d}, 1 \mathrm{H}, J 5.86, \mathrm{H}-6), 5.46(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{H}-1)$ and 5.73 (s, $1 \mathrm{H}, \mathrm{H}-7$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.74$ $\left(\mathrm{CH}_{3}\right), 9.64\left(\mathrm{CH}_{3}\right), 21.82\left(\mathrm{CH}_{2}\right), 29.37\left(\mathrm{CH}_{2}\right), 45.09(\mathrm{C}-5)$, $47.69(\mathrm{C}-3), 58.54\left(\mathrm{CH}_{3} \mathrm{O}\right), 72.60\left(\mathrm{OCH}_{2}\right), 76.24(\mathrm{C}-6), 80.92$ (C-2), 99.29 (C-7), 102.14 (C-1) and 207.85 (C-4); $m / z 272.1258$ $\left(\mathrm{M}^{+}, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6}\right.$ requires $272.1259,6 \%$).
2-(3-Chloropropyl)-3-exo-,5-exo-dimethyl-8,9,10,11-tetraoxatricyclo[5.2.1.12.6] undecan-4-one 4j. Mp 102-110 ${ }^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{1} 1718 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.14$ and 1.16 ($2 \mathrm{~d}, 6 \mathrm{H}, \mathrm{J} 6.96,2 \times \mathrm{CH}_{3}$), $1.65-2.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 2.64 ($\mathrm{q}, 1 \mathrm{H}, J 6.96, \mathrm{H}-3$), 2.89 (br quintet, $1 \mathrm{H}, J 6.50, \mathrm{H}-5$), $3.51-$ 3.57 and $3.61-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.08(\mathrm{~d}, 1 \mathrm{H}, J 5.86, \mathrm{H}-6)$, $5.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$ and $5.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.72\left(\mathrm{CH}_{3}\right), 9.60\left(\mathrm{CH}_{3}\right), 25.24\left(\mathrm{CH}_{2}\right), 30.24\left(\mathrm{CH}_{2}\right), 45.08(\mathrm{C}-5$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 47.75(\mathrm{C}-3), 76.20(\mathrm{C}-6), 86.78(\mathrm{C}-2), 99.27(\mathrm{C}-7)$, $101.98(\mathrm{C}-1)$ and $207.66(\mathrm{C}-4) ; m / z 276.0768 / 278.0740\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClO}_{5}$ requires 276.0764/278.0735).

\boldsymbol{S}-Methyl \boldsymbol{O}-(2,4-dimethyl-8-oxabicyclo[3.2.1] oct-6-en-3-yl)dithiocarbonate 9

To a stirred solution of the oxabicycle $6 \mathbf{a}(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ in toluene ($30 \mathrm{~cm}^{3}$), held at $-24^{\circ} \mathrm{C}$ and under a nitrogen atmosphere, was added DIBAL-H ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in toluene; $\left.7 \mathrm{~cm}^{3}, 10.5 \mathrm{mmol}\right)$. The reaction mixture was stirred for 2 h before addition of 10% aqueous tartaric acid ($30 \mathrm{~cm}^{3}$), and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 60 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with saturated aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and water ($50 \mathrm{~cm}^{3}$), dried over MgSO_{4} and concentrated under reduced pressure to leave the required alcohol 7 as a white residue ($1.5 \mathrm{~g}, 9.7 \mathrm{mmol}$).
A solution of this crude alcohol in dry THF ($7 \mathrm{~cm}^{3}$), was added to a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, washed with petrol twice; $1.1 \mathrm{~g}, c a .23 \mathrm{mmol}$) and imidazole (80 mg) in THF ($15 \mathrm{~cm}^{3}$), under nitrogen atmosphere. The reaction mixture was refluxed for 3 h (oil bath was kept at $70-80^{\circ} \mathrm{C}$) and after that time it had turned into a pale tan colour. On addition of CS_{2} ($2.85 \mathrm{~cm}^{3}, 47 \mathrm{mmol}$) and refluxing for 20 min , the reaction mixture became dark brown. MeI ($3 \mathrm{~cm}^{3}, 47 \mathrm{mmol}$) was then added and the mixture turned dark yellow. After stirring at $70-80^{\circ} \mathrm{C}$ for 30 min and at room temperature overnight, the reaction was worked up by slow addition of cold saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(30 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. The two layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(10 \%, 20 \mathrm{~cm}^{3}\right)$ and brine $\left(50 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4} and concentrated under reduced pressure to afford a dark brown oil. This oil was purified by flash chromatography ($3: 1$ petrol-ether) to afford the required product as a pale yellow oil ($1.71 \mathrm{~g}, 69.5 \%$); $R_{\mathrm{f}} 0.35$ ($3: 1$, petrol-ether); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3076,1593,1223$ and $1049 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.82\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J} 7,2 \times \mathrm{CH}_{3}\right), 2.40-2.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4)$, $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 4.50(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J} 4, \mathrm{H}-1$ and $\mathrm{H}-5), 6.29(\mathrm{t}, 1 \mathrm{H}$, $J 5, \mathrm{H}-3$) and 6.42 (s, $2 \mathrm{H}, \mathrm{H}-6$ and H-7); $m / z 244.0589\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $244.0592,5 \%$).

2-endo,4-endo-Dimethyl-8-oxabicyclo[3.2.1]oct-6-ene 10

To a stirred solution of the dithiocarbonate $9(1.1 \mathrm{~g}, 4.51 \mathrm{mmol})$ and AIBN (60 mg) in dry benzene ($20 \mathrm{~cm}^{3}$), under a nitrogen atmosphere, was added $\mathrm{Bu}_{3} \mathrm{SnH}\left(1.58 \mathrm{~cm}^{3}, 5.86 \mathrm{mmol}\right)$. The
reaction flask was transferred to an oil bath at $80-90^{\circ} \mathrm{C}$, and stirred for 25 h . After that time the solvent was removed with a stream of nitrogen and the oil obtained was purified by flash chromatography ($5: 1$, petrol-ether) to afford the required product as a pale yellow oil ($460 \mathrm{mg}, 73.9 \%$). The product was distilled at $10 \mathrm{mmHg}\left(40^{\circ} \mathrm{C}\right)$ to afford a colourless oil; $R_{\mathrm{f}} 0.27$ (5:1, petrol-ether); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3075$ and $1594 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.70\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J} 8,2 \times \mathrm{CH}_{3}\right), 0.90(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J} 13.5$ and $11, \mathrm{H}-3_{\text {endo }}$), $1.58\left(\mathrm{dt}, 1 \mathrm{H}, J 13.5\right.$ and $\left.5, \mathrm{H}-3_{\text {exo }}\right), 1.78-1.95$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4$), 4.48 (d, $2 \mathrm{H}, J 2, \mathrm{H}-1$ and $\mathrm{H}-5$) and 6.18 (s, $2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7$); $m / z 138.1045\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}\right.$ requires 138.1041, 18%) (Found: C, 77.4; H, 10.2. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ requires C , 77.65 ; H, 10.14%).

2,4-Dimethyl-3-methoxy-8-oxabicyclo[3.2.1]]ect-6-ene 8

The alcohol 7 was transformed using the same procedure described for the preparation of compound 6 h , to give ether $\mathbf{8}$ as a pale yellow oil $(57 \%) ; R_{\mathrm{f}} 0.38$ ($1.5: 1$, petrol-ether); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2884,1206$ and 1136; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.07 (d, $J 5,2 \times \mathrm{CH}_{3}$), $2.40(\mathrm{~m}, \mathrm{H}-2$ and H-4), $3.37(\mathrm{t}, J 4.4, \mathrm{H}-$ 3), $3.45\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 5.52(\mathrm{~d}, J 4.4, \mathrm{H}-1$ and $\mathrm{H}-5)$ and $6.48(\mathrm{~s}, \mathrm{H}-6$ and $\mathrm{H}-7) ; m / z 168.1150\left(\mathrm{M}^{+}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}\right.$ requires 168.1150, 8%).

Acknowledgements

We thank the British Technology Group, the Wellcome Trust and the CNPq Brazil for generous financial support, and Dr Oliver Howarth for numerous NMR studies. David Warhurst is supported by the PHLS.

References

1 P. Brown, New Scientist, 1992, 37; M. Johnson, Time, 1993 (May 31), 46.

2 W. Peters, Chemotherapy and Drug Resistance in Malaria, Academic Press, London, 2nd edn., 1987; T. T. Hien and N. J. White, Lancet, 1993, 341, 603.

3 Qinghao Research Group, Kexue Tongbao, 1977, 22, 142
4 For reviews on artemisinin and related compounds see: D. L. Clayman, Science, 1985, 228, 1049; W.-S. Zhou and X.-X. Xu, in Studies in Natural Products Chemistry, ed. Atta-ur-Rahman, Elsevier, Amsterdam, 1989, vol. 3; A. R. Butler and Y.-L. Wu, Chem. Soc. Rev., 1992, 21, 85; W.-S. Zhou and X.-X. Xu, Acc. Chem. Res., 1994, 27, 211; M. Jung, Curr. Med. Chem., 1994, 1, 45. For recent papers on 1,2,4-trioxanes and other ozonide-like analogues see: C. Singh, Tetrahedron Lett., 1990, 31, 6901; W. H. Bunnelle, T. A. Isbell, C. L. Barnes and S. Qualls, J. Am. Chem. Soc., 1991, 113, 8168; J. L. Vennerstrom, H.-N. Fu, W. Y. Ellis, A. L. Ager, Jr., J. K. Wood, S. L. Anderson, L. Gerena and W. K. Milhous, J. Med. Chem., 1992, 35, 3023; C. Singh, D. Misra, G. Saxena and S. Chandra, Biorg. Med. Chem. Lett., 1992, 2, 497; Y.-J. Rong and Y.-L. Wu, J. Chem. Soc., Perkin Trans. I, 1993, 2149. For the latest evidence for the mechanism of action see: G. H. Posner, J. N. Cumming, P. Ploypradith and C. H. Oh, J. Am. Chem. Soc., 1995, 117, 5885; G. H. Posner, D. Wang, J. N. Cumming, C. H. Oh, A. N. French, A. L. Bodley and T. A. Shapiro, J. Med. Chem., 1995, 38, 2273; R. K. Haynes and S. C. Vonwiller, Tetrahedron Lett., 1996, 37, 253 and 257.
5 M. J. Scmuklarsky, D. L. Clayman, W. K. Milhous, R. N. Rossan, A. L. Ager, Jr., D. B. Tang, M. H. Heiffer, C. J. Canfield and B. G. Schuster, Am. J. Trop. Med. Hyg., 1993, 48, 377; G. H. Posner, D. J. McGarvey, C. H. Oh, N. Kumar, S. R. Meshnick and W. Asawamahasadka, J. Med. Chem., 1995, 38, 607.

6 W. J. Cummins, M. G. B. Drew, J. Mann and E. B. Walsh, J. Chem. Soc., Perkin Trans. 1, 1983, 167.
7 M. J. Crabbe, J. A. Appleyard and C. L. Rees, Desk Top Molecular Modeller, Oxford University Press, 1994, version 3.0.
8 A preliminary account of some of this work has appeared: L-C. de Almeida Barbosa, D. Cutler, J. Mann, G. C. Kirby and D. C. Warhurst, J. Chem. Soc., Perkin Trans. I, 1992, 3251.
9 J. Mann, Tetrahedron, 1986, 42, 4611.
10 R. M. Ekong, G. C. Kirby, G. Patel, J. D. Phillipson and D. C. Warhurst, Biochem. Pharmacol., 1990, 40, 297.

Paper 5/08311G
Received 21 st December 1995
Accepted 8th January 1996

